tg-me.com/ds_interview_lib/47
Last Update:
В чем отличие стохастического градиентного спуска от обычного?
Стандартный градиентный спуск (Gradient Descent) и стохастический градиентный спуск (Stochastic Gradient Descent или SGD) - это два важных метода оптимизации в машинном обучении. Они отличаются в том, как обновляют параметры модели в процессе обучения.
• Градиентный спуск обновляет параметры модели на основе градиента, вычисленного на всем обучающем наборе.
• Стохастический градиентный спуск (SGD) обновляет параметры, используя случайные образцы из обучающего набора, делая обучение быстрее, но более шумным.
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/ds_interview_lib/47